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ABSTRACT 

In this paper we give a complete solution to the classification problem for 
w-categorical, w-stable theories. More explicitly, suppose T is w-categorical, 
w-stable with fewer than the maximum number of models in some uncountable 
power. We associate with each model M of T a "simple" invariant t ( M ) ,  not 
unlike a vector of dimensions, such that 5~(M) = 5~(N) if and only if M ~ N. 
The spectrum function, I ( - ,  T), for a first-order theory T is such that for all 
infinite cardinals )~, I()~, T) is the number of nonisomorphic models of T of 
cardinality ,k As an application of our "structure theorem" we determine the 
possible spectrum functions for w-categorical, w-stable theories. 

Introduction 

It is generally accepted that Shelah has solved the classification problem 

(described above) for countable first-order theories. (See [14] and [2, I.]] for a 

complete description of the problem and a statement of the results.) However, 

Shelah's structure theorem (assignment of invariants) is imprecise in that there is 

not a 1-1 correspondence between models and invariants. This is generally 

overlooked since, at least for oJ-stable theories, it is still possible to determine 
the spectrum function of the theory (see [12]). The deficiency, however, remains. 

We will prove an exact structure theorem for w-categorical, w-stable theories by 

using a different assignment of invariants. 

Suppose T is o~-categorical, ~o-stable with I(A, T) < 2 ~ for some A > w. Shelah 

associates with M ~ T a tree of countable submodels, called a representation of 

M, over which M is prime. It has not been shown that all representations of M 

are isomorphic, but only "quasi-isomorphic". It is at this point that the 

imprecision in Shelah's structure theorem occurs. Here we associate with M a 
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tree of elements of M eq, called a coordinate tree of M. It is not difficult to show 

that the coordinate trees of M are all isomorphic. As with representations M is. 

prime over its coordinate tree, but this is much harder to prove than in the 

representat ion case. It is at this point where the concept of a "fil tration" arises, 

and where we make essential use of the Coordinatization Theorem ([4, 4.1]). 

As a test of our structure theorem we prove 

THEOREM. Suppose T is ,'~-categorical, w-stable. Then I ( _ ,  T)  is one of 

(a) I(h,  T) = 2 ~ for all h > I,Io ; 

(b) for a < o9, I(1%, T)  is a finite number explained in 3.3, 

for a >= o9, I(N~, T) = I s  I; 

(c) I(A, T) = 1 ]:or all A >= No ; 

(d) I(N~, T) = ad-2((] a I + No) I"1) for ~ > 0 and some d E o9. 

Case (b) occurs when T is non-multidimensional.  The number  d in (d) is what 

Shelah calls the depth of T 

§I. Preliminaries and notation 

We assume a basic knowledge of stability theory as found in [10], [11] and [13, 

III].  For the most part  our notation follows [10]. The type of A over  B is 

denoted t ( A / B ) ,  even wheD A is infinite. We write A ,~ cB  or (A  ~ B / C )  for 

t ( A / B  U C) does not fork over C. If p is stationary and there is a type q E S ( B )  
parallel to p we write q :--p lB. For t ( a / A ) = t ( b / A )  we write a - = b ( A ) ;  

a ~ S b ( A )  denotes s t p ( a / A )  = s tp(b/A) .  For p E S ( A )  we say q is a strong type 

o f p  if there is an a realizing p such that q = s tp(a /A) .  When convenient we 

write A B  for A t3 B; A a  for A U {a}. When a type p is orthogonal  to the set A 

we write p H A. 

We assume every set is a subset of a large saturated model ~ called the 

monster  model. Every model is considered to be an elementary submodel of (S. 

See [13, p. 7] for a complete discussion. In this paper  we will often work in ~eq, as 

discussed in [10, §A] and [13, III ,  §6]. If M* is the restriction of M eq to finitely 

many new sorts we call M ~' an extension by definitions of M. 

For p a type and A a set we let p ( A )  = {b C A : b realizes p}. We say H C M 

is A-definable if there is a formula q~ over A such that H = ~0(M); if A = O we 

say 0-definable. A and B are conjugate over C if A = B (C). For p a type over 

A, q a type over B we say p and q are conjugate over C if there is an 

automorphism a fixing C such that a ( p )  = q. If A = q~(M) and ~0 is a complete 

formula A is called an atom. Morley rank is denoted rk( - ) .  
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We abbreviate to-categorical, to-stable by to-c.s. What we say from here on 

only applies to to-c.s, theories. 
We assume some familiarity with the results in [4], although in general, not the 

proofs. A rank 1 atom A over B is called reduced if a E A implies acl(aB)A 

A = {a}. For any rank 1 atom A there is an E such that A / E  is reduced. We say 

a reduced rank 1 atom A over B is trivial if whenever a E A ,  X C A  and 

a E acl(XB), a E X. 

We refer the reader to [4] for the definition of local modularity and modularity 

(as properties of strongly minimal sets). Independently, Cherlin and Zil'ber 

proved that every strongly minimal set in an to-c.s, theory is locally modular [4], 

[15]. This is the result which yields the theorems in [4]. Model-theoretically the 

most important property of locally modular sets is the following. Note that if 

r k ( a / A ) =  1 then a){AbC:>a ~ acl(Ab), 

LEMMA 1.1. Suppose H and G are A-definable, non-orthogonal strongly 

minimal atoms. 

(i) For all a E H, b C G there are a' E H, b' E G such that aa' ){ a bb'. 

(ii) If both H and G are modular there are a C H, b E G such that a X A b. 

The major technical lemma in [4] is 

LEMMA 1.2. (Coordinatization theorem) Suppose P is a B-definable atom in M. 

Then in some extension by definitions M* there is a B-definable atom A such that 

(i) A is reduced and has rank 1, 

(ii) for all a E P acl(aB) A A / Q. 

LEMMA 1.3. If  p E S~( M) there is a singleton a E M such that p does not fork 

over a. Furthermore, every infinite set of indiscernibles I is based on any e E I. 

PROOF. This follows from the proof of the finiteness of the fundamental 

order in [4]. 

LEMMA 1.4. Suppose A C ~°q is finite. Then there is no infinite set of types 

such that (*) each element of ~ is non-orthogonal to A and the elements of ~ are 

pairwise orthogonal. 

PROOF. Suppose there is such a ~. From simple facts about ~eq we know that 

for each p ~ ~ there is a regular qp ~ $1(~) such that p l q p  and qp 7fA (the 

variable in qp ranges over the original universe). Let ~ ' =  {qp :p ~ ~}. ~ '  also 

satisfies (*). By 1.3 there is for each q E ~ '  an aq such that q is definable over aq 

and ~ (aq) = 2. By the to-categoricity and to-stability there are aq ~ ap such that 
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aq =-Sap (A)  and p is conjugate to q over A. Since q f l A  [10, C.6] would imply 

p,t~ q if we had aq $ A a,. However it's not hard to show this additional condition 

is not needed when p and q are regular (see, e.g., the proof of 3.4 in [3]). Thus, 

p t q, contradicting our assumptions on ~ '  to prove the lemma. 

In [4] it is proved that the rank of T is finite. Since U-rank and Morley rank 

are the same on to-c.s, theories ([7] or [9]) we can restate 5.8 of [8]: 

LEMMA 1.5. r k ( a b / A ) = r k ( a / A  U b )+rk (b /A ) .  

We can now state and prove the main technical lemma. In arbitrary to-stable 

theories such a result is only true when A is a model. It's this lemma which 

allows us to obtain a tree of elements over which M is prime, rather than just a 

tree of submodels. In the proof we use Shelah's notion of canonical base (see 

[13, III, 6.10]). For ease of reference we restate [13, III, 6.10(5)]. 

LEMMA 1.6. For any stationary p, if p does not fork over B then Cb(p) C acl(B). 

LEMMA 1.7. Suppose ¢,[x,a) is a strongly minimal atom which is non- 

orthogonal to the finite set A. Then there is a rank 1 atom d/ over A such that q~ d{- ~b. 

PROOF. By adding constants to the language we may assume A = 0 .  If 

q~(x, a)  does not fork over O we can take its restriction to O as tp. Thus, we 

assume q~(x, a) forks over ~i. We know q~ is locally modular. By replacing q~ by 

its non-forking extension over some realization of it we may assume that it is 
modular. 

Find an a '  satisfying 

(1) a'~-Sa and a ' ~ a .  

Since q~(x, a) ,dO,  [10, C.6] implies that q~(x, a);(_ q~(x, a'). Applying 1.1(ii) (with 

A = aa') we find e satisfying q~(x,a) and e' satisfying q~(x,a') such that 

(2) e J,,,a', e' ~ a,a and eXa,.e' .  

Notice that by (1), (2) and the transitivity of non-forking we have 

(3) ea ,~ a' and e' a' $ a. 

Let I be an infinite Morley sequence in stp(e'a'/ea), p =Av(I /G) .  Let 

c E Cb(p)\acl(O) (there is s/ach a c since q0(x, a) forks over 0) .  By the definition 

of a Morley sequence we know p does not fork over ea. By 1.6 and the fact that 

c ~ acl(O) we have 

(4) c Eacl(ea)  and cX  ea. 
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By 1.3, p does not fork over e'a',  so c ~ acl(e'a ') .  Thus (3) yields ce'a' ~, a, in 

particular, 

(5) c ~, a. 

By (4) and the transitivity of non-forking eZac.  Since r k ( e / a ) =  1 we have 

e E acl(ca)\acl(a). By (4) and (5) c C acl(ea)\acl(a). We conclude that rk(c /a)  = 

1. By (5) rk(c) = 1 and we may take to to be some complete formula in t(c). This 

proves the lemma. 

COROLLARY 1.8. Let q~(x,a) be a rank 1 atom non-orthogonal to A. Then 

there is a rank 1 formula tO over A such that every strong type of ~o(x,a) is 

non-orthogonal to tO. 

PROOF. q~ is non-orthogonal to A when one of its strong types is. Since q~ is 

an atom all of its strong types are conjugate over A, hence all are non- 

orthogonal to A. Now take as tO the disjunction of the rank 1 sets obtained by 

applying 1.7 to each strong type of ~. 

We will make use of the following results of Shelah. They follow easily from 

2.2 and 2.3 of [5] and the definition of DOP. For brevity we say T has many 

models if in every A > oJ T has 2* non-isomorphic models. If T doesn't  have 

many models we say it has few models. Note that rk(p) = 1 ~ the weight of p is 1. 

LEMMA 1.9. (i) Suppose t (a /A  ) has rank 1 and is non-trivial; p E S (aA  ) has 

rank 1 and is orthogonal to A. Then T has many models. 

(ii) Suppose r k (a /A  )=  rk(b /A  )=  1 and a ~ Ab; p E S (abA ) has rank 1 and 

p q aA and p -t hA. Then T has many models. 

Let p be a reduced rank 1 type (over O, for simplicity). A word is in order 

concerning what a basis for p looks like, and the relationship between p and its 

strong types. First suppose that the strongly minimal components (i.e., the strong 

types) of p are modular (if one is modular they all are). Let qo,q, be strong types 

of p (over acl(O) in Meq). If qoZq, then, by 1.1, q,,Z"ql, so there are a, realizing 

q~ (i = 0, 1) with a,,E acl(a,). This contradicts that p is reduced. Thus, if p is 

modular, its strong types are pairwise orthogonal. A basis for p looks like 

B = Bo U • • • U B,,, where the B~ 's are bases for the strong types of p in M. If p is 

trivial then B = p(M) .  Now suppose the strong types of p are non-modular. In 

this case the strong types may not be pairwise orthogonal. There is a basis 

B = Bo H .- • U B,, O A, where B~ is a basis for the strong type q~, every strong 

type of p is non-orthogonal to some q~, and A is a minimal finite set such that 

acl(B) contains a realization of each strong type of p. By 1.1 we can require that 

there is no more than one realization of each strong type in A. 
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§2. The coordinate tree 

Throughou t  this section we suppose T has few models and that M is an 

arbitrary uncountable  model  of 7". 

First some terminology about  trees. For  a tree 0-, < ) and u E ~- we write u 

for the predecessor  of u, i.e., the v E ~- such that w < u ~ w < v or  w = v. We 

wr i t eu  ~ f o r { v E ~ - : v  = u } , u > = { v C ~ - : u < v } . I f u  + = O w e c a l l u a l e a f . s C - r  

is called an ideal if v E ! s  and w < v ~ w E s ,  u , - = { v ~ r : v < u } ,  u ~ =  

u< U {u}. All trees will have • as the least element,  u is said to be on the i- th 

level if lu~[ = i. For  all our  trees ~- there is a k E to such that lu<l =< k for all 

u C ~'. The smallest such k is called the height of ~-. 

DEFINITION 2.1. We define a coordina te  tree of M one level at a time. Let 

Lo = {Q3}. Suppose L~ has been defined and u E L,. Let A, , (u)  . . . . .  A , ( u ) C M  ~q 

be a set of u~-definable reduced rank 1 a toms satisfying 

(a) if i ~  j A ~ ( u ) ± A j ( u ) ;  

(b) for all i <= n A ~ ( u ) ~ u , ,  except when u = Q;  

(c) if C C M TM has rank 1, C/4 u~ and C -~ u<, then C ,g A~ (u)  for some i _-< n. 

(d) We further  suppose 1:hat whenever  v E L~ is such that w =- u- ,  A~(u)  is 

conjugate  to A~(v)  for all i =< n. 

Let B~(u) be a basis for A~(u)  in M ~q. Let L~, = U { B ~ ( u ) ' i < =  n, u E L~}. 

Extend the order  < by: v E B o ( u ) U . . . U B , ( u ) i f f  u < v ,  for all vCL~ ,~ .  

Let j be the least number  such that Lj,~ = O. Let ~- = L,, U .- .  U Li and call 

(~-, < ) a coordinate tree of  M. We say a type p appears in ~" if there is a u @ ~- such 

that p @ S ( u ~ )  and p is realized in A~(u)  for some i =  < n .  For  i =  < n  let 

~-, = (L,, t O ' "  U L,, < ). 

REMARK 2.2. Since not all u< above are conjugate  the n does depend  on u. 

To simplify notat ion we chose not to express this dependence .  

LEMMA 2.3. M has a coordinate tree. 

PROOF. We must show it's possible to carry out  the above construct ion.  

Suppose we can define ~-~ and u EL~. By 1.4 and 1.7 there is a finite set 

A o ( u ) , . . . , A , ( u )  satisfying (a)-(c). To satisfy (d) notice that if w -= u- then the 

conjugates  over u~ of Ao(v )  . . . . .  A , ( v )  satisfy (a)-(c) for u. That  there is a j such 

that Lj ,~= Q~ follows from the finiteness of rk (M)  and 

CLAIM 2.4. I f  Q < V < U then u l[ ~ v and u is dominated  by v over v<. 

Recall  the dominat ion  relation on sets [10, C.10]. With u, v as above let 
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s = {w : V < w ~< u}. Note  that w E s ~ t (w /w<)4v<.  Using this it is an easy 

exercise to show that s is domina ted  by v over v<. In particular,  u is domina ted  

by v over  v<. The  claim is now clear. 

From here on r denotes  this coordinate  tree of M. Recall  that  d c l ( A ) =  

{a : there  is a formula ~ ( x ) o v e r  A such that ~ ( a ) ^ 3 ! x ~ ( x ) } .  

COROLLARY 2.5. U E r ~ U< E dcl(u). 

PROOF. Since for any A dcl(dcl(A))  = dc l (A)  it suffices to show that for all 
v < u  

(1) v E dcl(uv<). 

By 2.4 (v){ u/v<) and u is domina ted  by v over  v<. Let q~ = t(v/v<). Thus, 

v E acl(uv<) O ~p(M) and w E acl(uv<) D q ~ ( M) ~ ( w) { v / v < ) .  Thus,  

acl(uv<) D q~(M) = acl(v<) (3 q~(M) = {v}, proving (1). 

It is clear that  sets definable over  dc l (A)  are also definable over  A. Thus,  for 

u ~ r, t(u/u,,) is the unique extension of t(u/u ). So, f rom here on we will 

replace u-  by u in most contexts. 

LEMMA 2.6. There are finitely many con]ugacy classes of types appearing in r. 

PROOF. We prove by induction that there are finitely many conjugacy classes 

of types appear ing in r~. Suppose it's true for ri. If u, v ~ L and u -= v then 2.1(d) 

implies that the types over u realized in u + are conjugate  to the types over v 

realized in v ~. It now follows from the inductive hypothesis  that r,+, has the 

desired property.  

From here on M* denotes  an extension by definitions which contains r. Its 

existence is guaranteed  by 2.6. 

LEMMA 2.7. r is independent with respect to <.  

PROOF. We prove by induction that for all i, r, is independent  with respect to 

< .  For  r~ this is trivial and for T 1 it follows from 2.1(a). Now suppose r~ is 

independent  and u E Li, for i > 1. As in the r~ case we have 

(2) u + is u - independent .  

Every  p E S(u)  realized in u + is or thogonal  to u , so by (2) t(u4/u) 4 u . Let 

s = r~\{u}. By the independence  of ri (u $ s/u-) .  Hence,  by [10, C.8] t(u+/u)H s, 

yielding 

0) u+u{u}$, su  U{v+:vcL, ns}. 
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From (3) it's clear that the set of leaves of ~-~+~ are ~-i-independent. The 

independence of zi+l follows easily from this. 

DEFINITION 2.8. For any tree o- let o - '=  o-\{v: v is a leaf}. 

LEMMA 2.9. U E "r' ~ t(u/U ) is trivial. 

PROOF. Suppose v E u  +. By 2.1(b) t ( v / u ) 3 u - .  Now the lemma follows 

immediately from 1.8(i) and our assumption that T has few models. 

LEMMA 2.10. If p appearz~ in ,c' then p ( M * ) C ~ ' .  

PROOF. Suppose p E S ( u ) a n d  B = r ' N p ( M * ) .  Wechose  B tobeabas i s fo r  

p in M ~q, thus c E p(M*)  ~ c ){ uB. The fact that p is trivial and reduced implies 

immediately that c C B, proving the lemma. 

Some of our f reedom in the choice of a coordinate tree is due to our choice of 

representatives from non-orthogonali ty classes (see 2.1(c)). We will see this is 

almost the only point of freedom. Fix M* and ~- a coordinate tree of M. Let 

o- C ~e~ be an independent tree. We call o- good if every type appearing in o- is 

conjugate to a type appearing in ~-, and conversely. 

LEMMA 2.11. Every model N has a good coordinate tree. 

PROOF. This is proved by induction, as usual. Suppose we have found o-i, the 

first i levels in a coordinate tree for N, such that every type appearing in o-~ is 

conjugate to a type appearing, in ~-i, and conversely. Then it is easy to show u E o-~ 

implies u ~ - - - w  for some v ~ ' ~ .  So, if A . (v )  . . . . .  A , ( v )  are the v~-definable 

types used to de fne  v +, the:ir conjugates may be used to define u + (since the 

conditions (a)-(c) also hold for these conjugates). The lemma now follows easily. 

LEMMA 2.12. If o- is another coordinate tree for M which is good, then o-' = ~-'. 

PROOF. Let o"i = o-~ f3 o-', similarly define ~-',. Suppose o-'i = ~"i and let u ~ Li 

not be a leaf of ~". Let Ao . . . . .  A ,  be the u-definable sets appearing in ~-. Let 

Bo . . . . .  B,, be the u-definable sets appearing in ~. Since o- is good there is a 

w C ~- and w-definable sets ~, . . . .  C,, which appear  in ~- and are conjugate to 

B0, . . . ,B , , .  These sets satisfy 2.1(a)-(c) for w, so by 2.1(d) we know each Ci is 

conjugate to some A,. Thu,;, renumbering if necessary, we have m = n and 

B~=A~ for i ~ n .  

We are not finished with the proof since some of the A, ' s  may not appear  in ~-'. 

Note that A~ appears  in ~-' if[ (*) there is a v E Ai and a v-definable rank 1 set D 

such that D q v- .  Notice (*) also guarantees Ai appears  in o-'. Thus, we can 
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number the Ai's so that A0 , . . . ,A t  are the sets appearing in both r '  and ~r'. By 

2.10 u + A r ' = A O U . . . U A  t = ~ r ' ( ' l { v E ~ r :  v =u} .  This proves ~r'i+l=~"i+l 

yielding the lemma. 

REMARK 2.13. Not only do we have o- '= ~", but as we proved in the first 

paragraph above, the same types appear in ~\~r' and r\~-'. Thus, o- differs from ~" 

only in a choice of basis for these sets realized by leaves. 

An easy induction argument using 2.5, 2.10 and the fact that there are finitely 

many conjugacy classes of types appearing in ~" shows that ~-' is definable. If we 

were willing to sacrifice the independence of the set of leaves we could alter 2.1 

by adding all of A~(u)  instead of just a basis. The result is a definable tree which 

serves our purpose equally as well. We chose the present definition only to make 

the above proofs easier. By these remarks we have 

PROPOSITION 2.14. I f  O" and 7r are good coordinate trees [or N, then o ~- ~r (as 

trees). 

Our long-range goal is to show M is prime over r. In Shelah's treatment,  

where the tree is a collection of submodels, this is not so difficult. The fact that 

the base of the tree is a model allows the application of strong results about 

domination and non-orthogonality to a set (see [5, 4.1, 4.3]). In our context there 

is more work involved. 

PROPOSITION 2.15. Suppose p in S ( M  cq) has rank 1 and is non-orthogonal  to 

";. Then there is a q appearing in r such that p l q. 

PROOF. Let s C ~- be a minimal ideal such that p/4s. 

CLAIM. There is a u E .r such that s = u~. 

Assume, towards a contradiction, that s contains at least two <-maximal  

elements v ,v ' .  Let s ' =  s \{v ,v '} .  By the minimality assumption 

(4) p -l s' v and p -l s ' v '. 

Since s is an ideal both v and v' have rank I over s'. If v X s, v' then v' E acl(s'v), 

implying p / ( s ' v  to contradict (4). Thus, v ~ s , v ' ,  which combined with (4) 

contradicts 1.9, proving the claim. 

By the minimality assumption on s = u~_, p -~ u . By 2.1(c) there is a q C S ( u )  

appearing in ~- such that q l p .  This proves the proposition. 

LEMMA 2.16. Suppose B is finite, A C M  °q is B-def inable,  strongly min imal  

and A 7( .c. Then 
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(a) for all but finitely many b C A, A C acl(rBb), 

(b) for all sets C C M *, A is dominated by "r U B U C over fg, 
(c) if A is modular, A C acl(rB). 

PROOF. By 2.15 there is a rank 1 set D appearing in r such that DZ_A. 
Suppose D is definable over w. Let b EA\acl (Bw) .  By Lemma 1.1(i), A C 

acl(bBwD). Afor t io r i ,  A C acl(bBr), to prove (a). For (c) note that by 1.1(ii), 

A C acl(BwD). 
Turning to (b) suppose d ~-- fS en is such that d ~ ,rBC. Clearly, it suffices to 

prove that d ~ ~'BCA under the assumption that C is finite. Let w be as in the 

proof of (a), b EA\acl(BCwd).  As above A Cacl(B~-b). Since b ~, cBwd and 

d J, CBw, d $ ~'BCA, as desired. 

Recall that for a sequence {el: i <  a} we abbreviate {el: i < / 3 }  by E~. 

DEFINmON 2.17. Let  A be any set, a E ~  eq. We call {(c~,A,): i =  < n} a 

filtration of a over A if 
(a) each A~ is a reduced rank 1 atom which is definable over A U G,  

(b) c, = acl(AC~a) C) A , ~  ~ ,  

(c) a E acl(AC,+l). 

REMARK 2.18. The purpose of a filtration is to "construct" a in terms of 

elements of rank 1. A filtration accomplishes this in the following sense. For 

simplicity let A = Q. Each element of c~ is in A~, hence has rank 1 over C~ by (a). 

Let E = c 0 U " "  U c, ={e~: i =< k}, ordered so that each element of cj comes 

before each element of q+t (j < n). (Remember  that the q ' s  are not elements, 

they are finite subsets of the Aj's.) Thus, E gives us a sequence such that 

rk(eflEj)<= 1 and a E acl(E). 

LEMMA 2.19. For all finite A and a there is an extension by definitions (f* in 

which there is a filtration of a over A. 

PROOF. This is proved with the Coordinatization Theorem. By 1.2 there is a 

reduced rank 1 A-definable atom Ao such that co = ac l (Aa)O A 0 ~ O .  Now 

suppose A~_~ and c~-1 have been defined so that t(a/AC~)is non-algebraic. Let A~ 

be a reduced rank 1 atom definable over A U C, such that c, = 

acl(AC~a)N A , ~  Q. By oJ-slability and the fact that (a /[ c~/AC~) there is an 

n < o) such that t(a/AC,+~) is algebraic. {(c~,A,): i =< n} is a filtration of a over 

A. 

DZFIrqTION 2.20. T is said to be of modular type if for all a and finite A in (S ~q 
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there is a filtration {(ci,A~): i _-< n} of a over A such that every strong type of Ai 

is modular, for i _  -< n. 

PROPOSmON 2.21. Let C C M *  and a EM*.  Then t(a/rC) is atomic. 
Furthermore, a is dominated by r U C over ~.  

PROOF. The basic idea behind the proof is to take a filtration of a over ~" and 

"replace" the Ai's by sets appearing in r using 2.16. The hard part is showing 

each A, is non-orthogonal to r. 

Let {(ci,A~): i <= n} be a filtration of a over D, where D C r is a finite set such 

that a ~ D~'. (If t ( a / r )  is algebraic there is nothing to prove.) 

CLAIM 2.22. For each i <= n there is a b, such that 
(a) b, CA,, 

(b) A, C acl(rB,+l), 

(c) t(b,/rCB,) is atomic, 

(d) if each strong type of A~ is modular, b, G acl(~-B,). 

We choose the bj's by recursion. Let Do . . . .  ,Dk be the strongly minimal 

components of Ao. By 2.16, for all but finitely many e, ~ D,, D, C acl(~-e~). Thus, 

we can choose these e, 's so that the type of bo = eo""  ek over ~-C is atomic, giving 

(a)--(d) for i = 0. Suppose bo . . . . .  bj_~ have been chosen so that (a)-(d) hold. To 

find bj we must first prove 

SUBCLAIM 2.23. Aj,4T. 

Suppose not. By (b) and 2.17(a) we have 

(5) for l _-< j, A~ is definable over acl(rB~). 

So Aj,4.rBj. Let k _-<j be such that Aj`4rBk and A, OrBk_~. Let e Cbk ~ be 

minimal so that 

(6) Aj ,4 rB~_le and Aj ~ rB~_I. 

First suppose e is a singleton. Then by (5), rk(e/rBk_~) = 1. By 2.22(d) we know 

t(e/rBk l) is non-modular (otherwise Aj`4rBk_~). Combining these facts we 

contradict 1.8(i). If e is not a singleton it is a rBk 1-independent set of elements 

of rank 1. We easily get a contradiction to 1.9(ii), to prove 2.23. 

Since Aj is an atom each of its strong types is non-orthogonal to ~-. Apply 2.16 

to each strong type of Aj to obtain a sequence bj C Aj to satisfy (a)-(c). Part (d) 

of the claim follows from 2.16(c). 

Combining the definition of a filtration with 2.22(b) we see that a E acl(rB,+~). 
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By 2.22(c), B,+, is atomic over zC. By the transitivity of isolation we have 

t(a/'rC) isolated. Notice that if T is of modular type a E acl(r). To finish the 

proof of 2.21 it suffices to prove 

CLAIM 2.24. a is dominated by .r U C over 0 .  

By 2.23, 2.16(b) and the fact that Ai+, is definable over z U Ao U .." U Ai, we 

have A~+~ dominated by ~- U C U Ao U .. • U A~ over 0 .  By the transitivity of 

domination A0 U . . .  U A~ is dominated by rC  over Q. Since a E acl(~-Ao- • • A . )  

2.24 is proved, as well as 2.21~. 

THEOREM 1. Suppose T has few models, M ~ T and z is a coordinate tree of M. 

Then M is prime over ~ and dominated by "r over 0 .  If T is of modular type then 

m C acl(z). 

PROOF. The last sentence follows immediately from 2.22. Let  N C M  be a 

maximal atomic model over ~- and fix a construction <c, : a < I N [) of N. By 2.21, 

N =  M. To prove the domination notice that by 2.21 at stage a of the 

construction we have Ca dominated by ~" over 0 ,  and c~ dominated by zC~ over 

0 .  By the transitivity of domination C~+l is dominated by ~- over QS. The theorem 

follows easily. 

The last sentence of Theorem 1 generalizes the following theorem of Gisela 

Ahlbrandt [1]: if T is totally categorical of modular type, then T is almost strongly 

minimal. 

LEMMA 2.25. Suppose A ( -M eq and p E S~(A ) is strongly minimal. Then 

p ,4 T, hence p is non-orthogonal to some type appearing in z. 

PROOF. Wlog, A = a is finiite. 2.22 yields a sequence E = {e~: i =< k} such that 

a @ acl(~-E) and for all i =< k, t(e~/~'E~) has rank 1 and is non-orthogonal to ~-. p is 

a type over acl(~-E). The proof that p is non-orthogonal to ~- is exactly like the 

proof of 2.23. 

We now connect our results with the concept of depth found in [5]. Assuming 

T has few models we know it Js shallow. It's not hard to see the depth of T must 

be finite. 

PROPOSITION 2.26. The depth of T is the height of any good coordinate tree. 

PROOF. We use some concepts and results from [5, §6]. The definitions imply 

d(T)  = max{d(p)+ 1: p a stationary type}. By [5, 6.2(ii)] we can restrict these p 

to regular types. It's an easy exercise (using 1.2) to show every regular type is 
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non-orthogonal  to a strongly minimal type in (S eq. Let ~r be a coordinate tree for 

~. By 2.25 every strongly minimal type in (5 °4 is non-orthogonal  to a type 

appearing in o-. Thus, d(T )  = max{d(p)  + 1: p a strong type of a type appearing 

in ~r}. Let n be the height of ~. 

CLMM. If  p is a strong type of a type appearing in ~r and realized in the i-th 

level, d(p)  <- n - i. 

The claim is proved by induction on n - i .  Suppose n - i  = 0  and p =  

stp(u/u<). Let N ~  T e" be a countable model containing u< such that u ~ ,< N 

and let M = N[u]. Let q E S(M)  be strongly minimal. To show that d(p) = 0 it 

suffices to prove that q/4N. By Lemma  2.25 there is a v E~r such that 

q f_stp(v/v~). Let A = M n v<. 

SUBCLAIM. A = v<. 

Suppose v<\A is non-empty and enumera te  it as Wo . . . . .  wk with w7+1 = wi 

(i < k). (This is possible by 2.5 and the fact that dcl(M) = M.) Since rk(wo/A)= 

1, MXA w0 implies w0 E acl(M) = M. Thus M $ a W0- By Claim 2.4, wk is 

dominated by Wo over A, so w~ ~ AM. Since (wk)< Cdcl(wk) we have v< ~, aM. 

Our  assumption that v< ~ A implies that t(v/v<)-~A (by 2.t(b)). By [10, C.8] 

t(v/v<)qM. This contradicts that q E S(M)  and qZt(v/v<),  proving the sub- 

claim. 

By the subclaim we have v< E M. Since a E M \ N  © a XNu it is easy to show 

that any w E o fq ( M \ N )  is also a leaf. Thus, v< E N. Hence t(v/v<) and q are 

both non-orthogonal  to N. 

The general inductive step is organized as follows. Suppose p = stp(u/u<), u is 

on the i-th level, and M and N are chosen as above. Let q E S(M)  be strongly 

minimal, v E o- such that t(v/v<)Zq. As in the proof of the subclaim we have 

v< E M. Since a ~ M \ N  ~ a ~ Nu, we see that v< E L0 U - . .  U L,. Thus, v is on 

at most the i + 1-st level. It follows from the inductive hypothesis that d(q)<- 

n - (i + 1). By the definition of depth d (p)  =< n - i. This proves the claim. 

Now suppose u G L~ is such that for all i, 2 =< i =< n, u> f) L i ~  O, p = stp(u). 

Clearly, d(p)>= n - 1. By the claim d(p )  = n - 1 and this is the maximum depth 

among such types. This proves the proposition. 

§3. The spectrum function and invariants for M 

We continue the conventions adopted in Section 2: M is an arbitrary 

uncountable model, z is a coordinate tree for M and all coordinate trees are 
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good. We showed in Section 2 that there is a one-one correspondence between 

models and isomorphism types of coordinate trees. In this section we first give a 

necessary and sufficient condition for a tree to be the coordinate tree of some 

model. The spectrum function is then determined by counting the number of 

these trees. Lastly, we give a method of labelling coordinate trees which 

generates an invariant for M. 

DEFINITION 3.1. We say a good tree o- is permissible if the following hold 

whenever u Eo-  and p E S ( u )  is conjugate to a type appearing in some 

coordinate tree. 

(a) Suppose the strong types of p are modular. Then for all strong types q of p, 

q(~r) is infinite. 

(b) Suppose the strong types of p are non-modular. Then there are strong 

types qo,...,q,, of p which represent the non-orthogonality classes among the 

strong types of p such that q~(o-) is infinite for i =< m. ~r also contains a minimal 

set of realizations of other strong types of p such that each strong type of p is 

realized in acl(p(o-)U u). 

PROPOSITION 3.2. If cr is permissible there is an N such that cr is a coordinate 

tree for S. 

PROOF. Let N be prime over ~r. Our definition of permissible guarantees that 

for u E cr there are Ao(u) . . . . .  A , (u)  appearing in o- which satisfy 2.1(a)-(c). 

Notice also that 2.1(d) is satisfied. So, to show o- is a coordinate tree it suffices to 

show that for p E S(u) appearing in ~, B = p(o-) is a basis for p in N. (See our 

remarks on bases of reduced rank 1 atoms in Section 1.) Let c ~ p(N) .  Using the 

independence of o- and the fact that q E S(v) appearing in o- implies q 4 v-, it is 

routine (but tedious) to show (c ~ o'/Bu). Thus, t(c/Bu) is atomic. Let D CBu 
be finite and such that 

(1) t(c/D)Ft(c/Bu) and u E D .  

We may assume D contains a, realization of all strong types q of p which are 

realized in B. Since B is infinite there is a b E B\D. If t(c/D) is non-algebraic 3.1 

implies t ( b lD) l "  t(c/D). This contradicts (1). Thus, t(c/D) is algebraic to prove 

the proposition. 

We now show how to count the number of non-isomorphic permissible trees 

of cardinality ~ .  Let d be the height of any coordinate tree (d is the depth of T 

by 2.26). One case is a particular nuisance so we consider it separately, 
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Subsection 3.3. (The spectrum function when d = 1) Wlog, T is not N,- 

categorical. Let q0 . . . .  ,q._~ be the strong types over • which are realized by 

in!finitely many elements of r. Let ei E acl(Q) be such that there is a stationary 

ri E S(e~) parallel to % Let f = Ui<,r~(x~), which is easily seen to be in S . ( E . )  

since the q~'s are pairwise orthogonal. 

This case is complicated by the fact that there may be a structure placed on the 

e~'s which keeps permutations of the r~'s from being conjugate to ~. 

Let As = {K: n0_- < K _-< ~L}, A"~ the set of functions from n into As. We define 

an equivalence relation ~ on A~" (uniformly for all a )  as follows: 

f ~ g if there is a permutation ~- of n such that f = go-vv and U~<,r,,(o(x~u))is 

conjugate to F. 

Let fM E A"~ be such that f ~ ( i ) = d i m ( r ~ ( M ) )  for i <  n. We leave it as an 

exercise to show fi~/~ is an invariant for M, i.e. 

(2) M =  N itI f M l ~  = f~l  ~ . 

Let I , (h ,  T) be the number of non-isomorphic models of cardinality at most h. 

We have 

(3) t [(AX/-)X  <oU (AS/-) l- 
First suppose c~ is infinite. Since each ~-class is finite and A~" is infinite 

(4) I , (No,T)=[A:[=Ia+I I and I(No,T)=]A~"\  U (A~) , 
! g3<a 

It is easy to see IA~"\ U~<,(A~) I = IA]I, so 

(5) I(N~, T) = l a I, when a => to. 

when a -_> to. 

For a finite we have 

(6) I ( I ~ + I , T ) = I ( A 2 + , / - ) \ ( A : / - ) I = I A 2 + , / ~  [ - I A 2 / - I .  

To get an idea of what this number is notice that n .  [a + 1[ _-< IA: / -  ] --< l a + l J°. 
Note that for a given theory ~ is uniquely determined, so I (A,T)  can be 

computed precisely. 

REMARK 3.4. It follows from the next proposition and the theorem quoted in 

the title of [6] that 3.3 gives the only possible spectra for theories with a finite 

number of models in some uncountable power. 
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PROPOSITION 3.5. I f  d >= 2 then ]:or a > 0 

(7) I(N~, T) = :la 2(([ a [+ No) I~l. 

PROOF. Starting with elements on the highest level and working down we 

count the possible isomorphisms types over  u for u~. Suppose u @ Ld t and 

u ~ / 0 .  As in thc d = 1 casc wc find that the numbcr  of isomorphism types for 

u-> is 

(8) f i n i t e i f a < o J  and [ a [ i f a = > o J .  

Now suppose u ~ Ld-2 and u> N Ld / •. Let q be a strong type over  u realized 

by infinitely many v E u+ such that v* / ~ .  (Since q is trivial this property is 

independent  of the choice of permissible tree.) For a fixed coordinate tree o- 

containing u the isomorphism type over u of (q, o-)> = q(o~) U {w : w E q(tr)} is 

determined by the number  of elements v of q(o-) such that v + has a fixed 

isomorphism type. Note that there are permissible trees where this number  is 

finite. Combining this remark: with (8) we find that the number  of isomorphism 

types in {(q, o-)>: u E o-, ~r a coordinate tree} is (1 a ] + ~0) I~l. Letting q range over 

the strong types realized in u ~ we see that this is also the number  of isomorphism 

types for u>. For u E Le-3 with u> n L d / Q  we similarly find that the number  of 

isomorphism types for u> is "!i((I a [ + No)t"). Continuing down through the levels 

we eventually compute  O>, the number  of non-isomorphic coordinate trees, as 

"% ~(([ a [ +  No)P~I), to prove the theorem. 

We now show how to label a coordinate tree of M to find a set-theoretically 

simple invariant which determines M up to isomorphism. We first need to 

discuss a problem like that wlhich arose in the d = 1 case. Let tr be a coordinate 

tree of N, u C tr'. Let ro . . . . .  r,, ~ be strong types over u realized by infinitely 

many elements of u +. As before we may assume there is an e~ E acl(u) such that 

r~ E S(e~u). Let ~, = U~<,rz(x~) (an element of S , (E ,u ) ) .  Recall that z denotes 

the coordinate tree of M obtained in Section 2. We may require that whenever 

u, v E ~-' are conjugate, F, and L are conjugate. We call a good coordinate tree 

excellent if whenever v E o- is conjugate to u E z, F,, is conjugate to L. As in 2.11 

every model has an excellent coordinate tree. 

Now we're ready to label r. Let [M I = h and A = {K: ~ _-< h} (including finite 

cardinals). We will associate with u E z a set tag(u) which determines u> up to 

isomorphism. The labelling is done from the top down. If u is a leaf let 

tag(u) = {Q}. Suppose tag(v) has been defined for all elements on levels above i 

and u ~ L~. Let F~,I = {tag(v): v E L~.~}. Let r~, . . . . .  r, ~ and F, be as above. For 
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j < n let fj : F~+,~ A be given by 

(9) for ¢ E F,+,, fj(~:) = [{v E u+: v realizes rj and tag(v) = ¢}1. 

Finally let tag(u)={f,~o~,...,f=~,_l)): zr is a permutation of n such that 
I,.Ji<,r,~i)(x~<i)) is conjugate to ~u}. 

We de~fine the invariant of M, 3t(M), to be tag(O). Assuming that, for all N, 

3~(N) is computed with an excellent coordinate tree we easily prove 

THEOREM 3.6. M = N if[ 5 ( M )  = 5~(N). 
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